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ABSThACOT

Ti is report describet a method for using three-dimensional
infinite el.ments to compute acoustic fields in the infinite region

0 containin., water that surrounds a submerged structure. In this
method. finite elements are used to represent a bounded region that
contains the structure and in some cases contains part of the
surroui(ing water. The unbounded region that surrounds the
bounded region represented by finite elements and that contains the
remainder" (4 the water is represented with infinite elements. The
infinite elements implement the added mass approximation to the
Helmholtz equation.

Several other methods are available for modeling the the effects
of the surrounding water. For the added mass approximation, an
alternative to using infinite elements is to model part of the
surrounding water with several layers of finite elements. To
determine whether the method using infinite elements gives an
advantage, th . efficiency of that method is compared with the
efficiency of the alternative method. The relative efficiencies are
determined by comparing, for each method, the effort to construct the
model and the accuracy of the solutions obtained. Evaluation of the
infinite elements shows that they produce accurate results especially if
they are used over a layer of finite fluid elements. However, when
solutions obtained using infinite elements are compared with solutions
obtained using only finite elements, it is seen that, for added mass
problems, infinite elements do not offer asignificant advantage over
finite elements. Infinite clements are expected to provide a greater

-. advantage when used to solve the lelmholtz equation.

ADMINIS'IRATMVE I NFORMATION

This project was jointly Supported by the DTNSRDC Independent Research Program, spcnsored by the

Space and Naval Warfare Systems Command, Director of Navy Laboratories, SPAWARS 005, and

administered by the Director of Research, DTNSRDC 012.3 under The Office of Chief of Naval Research

* Program Element 61153N (Task Area ROOO-01-01 under DTNSRDC Work Unit 1844-125.) and by the Office

of Naval Rebcarch Mathematical Sciences program, Numerical Methods for Naval Vehicles Program, Program

Element 61153N, Task Area BR-014-03-51, Work Unit 1840-040.

INTRODUCTION

To compute magnetic or acoustic fields about submerged marine structures, the structure, the

surrounding water, and interactions between thei must be modeled. The field and the stiucture can each be
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represented by finite elements and the representations can be coupled using a method developed by

Zienkiewicz and Newton. 1 If the structure is submerged in the sea, the extent of the water surrounding it is

so great that the region containing the water is best represented as having infinite extent. If finite elements

are used to solve such a problem, one can model the structure and a finite part of the infinite region

surrounding the structure. This leaves the problem of accounting for the remainder of the surrounding

infinite region.

One method of accounting for the infinite region of water surrounding a submerged structure is to

represent the region with infinite elements. To solve problems involving sound radiated or scattered by a

submerged structure, the water is treated as an acoustic fluid, that is, a fluid having an acoustic pressure field

described by the wave equation. For low frequencies, an approximation called the added mass approximation

(described later in this report) simplifies the solution of the acoustic problems. This report documents the

development of infinite elements and the evaluation of these elements for fluid-structure interaction probler.

involving the vibrations of submerged structures in which the added mass approximation is made.

To be useful, an infinite element must not only be able to produce solutions with good accuracy but

must achieve this accuracy while requiring less effort for modeling and computation than competing methods.

Several competing methods of accounting for the surrounding infinite region are as follows:

The surrounding region is truncated by modeling a large part of it with finite elements and

applying boundary conditions that approximate the effects of the remainder of the infinite

region.

* The solution is expanded as a series of analytic functions in the surrounding region with the

coefficients of the series terms introduced as unknowns.

, The effects of the surrounding region are represented by an integral equation on the boundary

of the region surrounding the finite elements.

Zienkiewicz et al." compare modeling with these methods and with infinite elements and find that each has

certain advantages and disadvantages.

2
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The advantages of using infinite elements are that they maintain symmetry and reasonable bandwidths

in the matrices produced, and the method is easy to implement using available finite element programs. On

the other hand, some fui mulations of infinite elements introduce more degrees of freedom than do competing

- methods, and in some cases an extra effort must be made to ensure that element shapes and modeling

configurations pro ide unique mappings. See Bettess and Bettess 3 for a dscu.,,iun on avoiding nonunique

mappings. rur some problems, these ,haracteristics may require additional effort in producing tie numerical

model.

In this report the surrounding infinite medium is assumed to be an acoustic fluid and infinite elemer.ts

are used to represent tL,. fluid. An infinite element represents a sector of the infinite region extending from

the boundary of Lhe finite region. In both finite and infinite elements the unknuon function is approximated

by shape functions and a functional involving the shape functions is integrated over the area or volume of the

03
element. To obtain convergent integrals for infinite elements, one of two schemes is used.3 The first

incurporatcs deca. factors in the shape functions that vary in the direction that extends to infinity, the second

,cheme maps the, infinite element into a standard square or cube. In the becond scheme, the decay factors

appear ui the mappings that compress the infinite element into a finite region. In either case, the decay

faLt)rs may ke oie of several forms, they may decrease exponentially with the distance r from a fixed point,

o decrease as a puolem of r. Many earlier developments of infinite elements u-sed exponential decay factors,4

but thtsb rtquire the choice of a somewhat arbitrary parameter called the decay length, and at moderate radii

the shape functions do not approximate the behavior of solutions as well as the reciprocal of a power of the
radius. Later work in infinite elements 5 has enphasized dccay factors that decrease r', and these factors

are used in this work.

Several beginnings of applications of infinite element,, to vibiations of submerged structures have been

made ii %vhich promniliing esultb have been reported. 6 ' 7 The infinite elements used in these papers contained

exponential decay factors, and the papers do not report useful comparisons Nvith alt rnative methods of

computation.

3
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In problems with steady sta. solutions for the acoustic response of submerged structures, the behavior

of the surrounding acoustic fluid is described by the Helmholtz equation. For low frequencies, an
V

approximation can be made in which the effect of the surrounding fluid becomes that of increasing the mass

of the structure. This approximation is called the added mass approximation. The results given in this report

show that, for fluid-st.ucture interaction problems using the added mass approximation, infinite elemi its givp

good results and ,n fact are competitive with an alternative method. Howev n the case of the added mass

approximation the infinite elements do not offer a clear advantage over t , alternative. This conclusion does

not apply to the application of infinite elemeits to Helmholtz equation problems in which infin, - elements ar-

expected to offer advantages over their competitors, s;nce for these prob!ems the -. ot Lic wave characteristics

of the sound field are important and the infinite elementv will reflect these charartlerist-cs.

FINITE AND INFINITE ELEMENT MODEL OF A FLJID-STRUCTURE SYS'JiEM

A finite element model is used to compute the natural frequencic, -f a struct"re sibmerged in an

acoustic fluid or the structure's response to harmonic excitation over a range of frequencies The finite

element model of the acoustic fluid in which a structure is submerged me.) contain both finite and infinite

fluid elements. Both finite and infinite fluid elements may be of various orders with various numbers of

nodes. The infinite and finite fluid elements used in this report are brick-type three-dimensional elements

with eight nodes.

Paradoxically, an infiite element is a type of finite element. (The adjective "finite" indicates that a

finite element has at least finite dimensions, that it is not an infinitesimal element as used in the derivation of

equations of physics.) Thus infinite elements inherit marny of the desirable features of finite elements The

configuration of the model in terms of nodes and connections and the form of the resulting matiices do not

change when infinite elements are included. Computing the matrix entries contributed by infinite elements

follows the same steps as computing matrix entries for finite elements, although some special coniderations

are needed to ensure that integrals over infinite regions converge. The contribution of an infinitt element is

', included in a finite element matrix in the .,ame manner as the contribution of a finite element The finite

element matrices remain symmetric and banded if infinite elements are included. These properties rake it

'4



easy to inc!u le I.l' elements, in existing finite element codes, and in the following discussions we will use

expr"S"o'i.l 'ih.s finlite element method, finite element mnodel, or finite element matrix, even though

infint0 elemnts may be included.

'o uc infinite elements to niodel as5trL.~ure submerged in an unuounded acoustic fluid such as the

z a vt ul..nid. tfinite legion containing the structure alid optionally part of the fluid close to the structure

%it& finlt' it, Ifeiznt and th. remiuadr wvithi infinite elements. A model of the. surrounding fluid that contains

NA jnl) Ilmit- fluid1 elemntst vasibth of one or more layers of finite elements co~erig the surface formed by the

inttrce ~etn the .tructUre arid the fluid. If infinite fluid elements are used, one or more outer layers of

finlte: LLAlu i WLe replaced by am. layer of infinite elemients. Each infinilte element represents a sector of the

im~flt.wrin ia,1ating oLAtwdrd from the boundary of the region modeled with finite elements. Figure 1

bhte thrce; w~nfigui ttivnz, of finite and infinite elements modeling thc sairounding fluid. The most

ad'..irltak.lo aridngenitnt in tcrin. of reducing modeling and computationi costs is that all the finite fluid

A~Ielements are rc placed so, that only infinite elements remain to model the acoustic fluid.

Thec fiitc elemetnt i. etthcd prod ices one matrix equation for the dis5placementis in the structure and

aiiuthti Jiiatni>, Lquation for the acustic, pressure field in the surrouinding fluid. These matrix equations are

'eupltd b,. term.~ arl~ing from interactions between the flid and the struzture. To compute natural

fieuej .i~sof thie fluid-structure system, ont. azsunies a time harmonic solution, and the matrix equation

b4. ,iiim. the , tuatic'n for an eigenN alue problem that deterni 'ncs the frequencies. To comnpute the response

aharnl'unic exciting iorce, one solves a s5ytein of equations with complex coefficients and a sinusoidal

forcing term for the nodal displacements.

Skandard finite ele me itt modeling procedures produce the matrix equation for the vector of nodal

displacements u in the structure8

mll %%ich M, 13, atid K are the structural nias., damping, and stiffness matricies and f is thme vector of forces

acting on the nodes of the structure.

10



(a)

Fig. 1. Infinite elements and finite elements modeling the surrounding fluid:
(a) Fluid modeled with three layers of finite elements, (b) Fluid modeled
with infinite elements over two layers of finite elements, and (c) Fluid
modeled with only infinite elements.SThe differential equation for the acoustic pressure P in the fluid is the wave equation

I 02P 72p = 0

where c is the speed of sound in the fluid. A method of analogies that uses solid three-dimensional structural

elements produces a matrix equation for the pressure field in the acoustic fluid. The method of ianlogies 9 is

applied by giving Young's modulus E 1.0 and the shear modulus G 10.5 and produces a miatrix cutntionI 6



for the pressure field in the acoustic fluid

Qi + Hp = 0

where p is a vector of pressures at the nodes of the fluid finite elements.

If the acoustic pressure is harmonic in time with frequency w, that is, P(x,t) p(x)eiwt where x is a

point in space and k = w/c, the wave equation becomes the Helmholtz equation

V P + V 2 p 0.(1

Interactions at the fluid-structure interface couple the structure and fluid matrix equations See

Schroeder and Marcus 10 and Everstine et al. 1 1 for details of the analysis of the fluid-structure coupling The

acoustic pressure acting on the interface produces a force vector (with the convention that forces acting

outward from the surface are positive), so the matrix equation for the structure bec )mes

Mii+B +IKu =-Ap+F

where the matrices M, B, and K are defined previously, A is a matrix whose entries reflect the areas of

elements on th. interface, and F is the vector of forces other than the acoustic forces on the nodes of the

structure. The mo, ,n of the structure also affects the acoustic pressure fiehd in the fluid. The normal

component 66 of the (.,A.leration of the interface between the structure and fluid is related to the gradient of

the acoustic pressure field by the equation

where p is the density of the fluid and o'Oi is the derivative in the direction fi normal to the iiterfac, This

relation ib added as a boundary condition and produces a force-type term in the equation for the acoustic

pressure field. In the fluid finite element matrix equation, this term is an area matrix term

Qp+ Hp -pAT'

7
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For the time harmonic case this equation becomes

k2 Qp+Hp= - pAT. (2)

The matrix A is the same area matrix that appears in the matrix equation for the structure. Either a

consistent or a lumped formulation may be chosen to compute the matrix A. For problems using the added

mass approximation, the lumped formulation has worked well 1 0 1 1 and was used in this work.

Combining the matrix equations for the structure and the acoustic field produces a system of equations

for the coupled fluid-structure problem

Mu +Bu+Ku+Ap=F
(3)

- pATii + Q +Hp= 

3)0.

'These equations are written in the form of a matrix equation

Mfl 0~ + [r 0]( ) + [ Al ( F)

=:,,' ;0 (F).

'Ihis equation can be made symmetric by defining a new variable, essentially a velocity potential 12

q(t) f p(,r)dr,
0

* and integrating the second row to obtain the matrix equation in 'he form

0][) +[B A][)-+ 1(u)()
+f AT 0 0 H q 0

If the equation is harmonic in time (this is the situation to ,%hich the Helmholtz equation applies), then theI. coupled matrix equation becomes

"i~ j 2 +w 1 + 10 ~~~_W 0 (u) =(0F).

8
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The response to a harmonic excitation of frequency w is computed by solving the preceding equation for

displacements at selected grid points resulting from an applied harmonic load F(t) = eiwt applied at a load

point. For natural frequencies, the eigenvalue equation01 +"[B A
w, + [ AT 0 + H I--0

is solved for the complex frequencies w.

In this report the added mass approximation, valid for low frequencies, is used. For small w the

Helmholtz equation (Eq. 1) is approximated by v 2p = 0, the fluid matrix equation (Eq. 2) becomes

Ip -PAT; and the coupled fluid-structure system of equations (Eq. 3) is

M + Bi + Ku + Ap = 0

-pATii Hp = 0.

If the scuLnd cquatiun is ,olved for p and this expression for p is substituted into the first equation, the first

equaLiun will include the term pAH- lAT ii, which has the form of a mass term and is called the added mass.

This subbtitution %as ubed to compute the natural frequencies of a submerged plate. For computational

reasons, the bubbtitutio1 was not used explicitly for the frequency response of a submerged cylinder.

INFINITE ELEMENT FORMULATION

The infinite elmeats used in this study are of the mapped reciprocal decay type. They are three-

dimnsiunal brick-type tlements vith eight nodes. The formulation of these elements is similar to that of anj

ioopaianttric finite clement in that the region represented by the element is mapped into a standard finite

cuLe. The mapping for an infinite element incorporates decay factors, factors that decrease to zero fast

enough to map the infinite region into a standard finite cube. The decay factors used in these elements are

recipiocals of powers of the distance r from a convenient origin to the mapped point.

Pj



The mapping function is

x = x1F2)( )F2(iI( ) + X2F1( )F2(i)Ii( )

+ X3Fj(C)F1 (i;)H1 ( ) + X4r 2(MFj(tj)H1 ( )

+ x5F2(0)F2(i)H 2(0) + x6F-1( )FA()H 2(0)

+ X7r'j(C)Fj(j)H-2(0 + x8F2(MFj(tq)H.2( )

and the shape functions are

*2C?, = F()2O I

NAC?7 - Fj( )Fj(y)G2,(5)

Fj(r-) = (I- r)/2; F2(7.) = (1+7.)/2;

=15 5(- 1)/2)- 02(5) = 1 2

H () 2 ( = H2(5)= -)A1 )

In the preceding definitions, a point in space is x =x! + yj + Ak, for i, j, and k unit vectors in the x-, y-, and

z-directions, and xi and N, are the locations and shape functions for the ith node in an infinite element. Using

these functions, one can compute the Jacobian of the mapping function and the gradients of the shape

functions.

to



Then the integrals over an element

f f f N1 Nj dxdydz = f f f N1 Nj IJI d(ld?)c
- 1-1- 1

f f f VNjVNj dxdydz = f f f VNjVNj IJI dcldtd"
-1- 1-1

are computed by numerical quadrature over the finite region of the standard cube. These values are the

contributions of the infinite ele nnts to the finite element matrices. Figure 2 shows the mapping and the

standard cube.

8 58

7 6

O7

Fig. 2. An infinite element and its parent cube.

The standard cube in the , ti, space is defined by - I _ , _ I. The variable C is mapped into

the diicction going to infinity in the infinite element. The face defined by nodes 1-4 of the infinite element

lies on the outer surface of the region modeled by finite element,. lhvi face correbponds to the face of the

standard cube that is defined by " - -1. Each of the pairs of nodes 1 ,5, 2,6, 3,7, and 4,8 of the infinite

clement dtei mninc. one of thw four ra)s that dek iair.c the i gion iueieseiited by the element. Nodes 5-8 of

. II



the infinite element correspond to the four nodes in the standard cube at which 0 0. Since the infinite

element is mapped into a finite region, a standard Gaussian quadrature is used to compute the preceding

integrals.

EVALUATION OF THE INFINITE ELEMENTS

The infinite elements developed for use ,vith the added mass approximation ,ore evaluated by

performance tests in which the accuracy of solutions obtained using infinite elements was compared with the

accuracy obtained using only finite elements. These tests of the infinite elements are intended not only to

show whether the elements produce accurate solutions, but also to determine whether they offer an advantage

over other methods, that is, whether they produce as good or better accuracy with less modeling effort, or less

computer time. Although both finite and infinite elements can be formulated with higher order mapping and

shape functions, both were chosen to have eight nodes and to have shape functions that are linear in the plane

of the fluid-structure interface. The infinite elements with eight nodes have shape functions that are quadratic

in the infinite direction. For fluid-structure interaction problems using the added mass approximation, it has

been shown that good results can be obtained using only a few layers of finite elements to model the

surrounding fluid. 1 3 Therefore, for the infinite elements to be competitive with finite elements, comparable

results should be obtained using infinite elements only, or much better results should be obtained by using

infinite elements with one layer of finite elements.

The computations for carrying out the evaluaions of the infinite elements were made using the finite

element program NASTRAN. Separate programs generate the matrices for the infinite elements, and

NASTRAN reads the matrix entries during execution.

As a preliminary test to validate the formulation of the infinite elements, the elements were used to

compute the solution to a Dirichlet problem V2 u - 0 outside a boundary formed by a cylindrical shell with

4 finite length and closed ends. The Laplace equation describes the acoustic field in tile added mass

approximation. This test evaluates the performance of the infinite elements for representing the Laplace

operator while avoiding the complications of the fluid-structure interaction problem Solutions obtained using

infinite elements were compared with solutions obtained using only finite elements. The standard for the

12
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comparisonms as a solution obtained by the boundary element program BEASY. Details of the evaluation and

results of this test are given in Appendix A. The results of this test show that, when modeling the exterior

region for the three-dimensional Laplace equation, the use of infinite elements produces more accurate

solutions than the use of finite elements.

A factor in determining ihe relative efficiencies of two methods is the expense of setting up and solving

a problem using each method. Since the infinite and finite elements used in this work cach contain eight

nodes, the effort needed t, produce a finite elemeat model and to perform the computations using a layer of

infinite elements covering the surface of the structure is approximately equal to the effort needed for one layer

of finite elements. Thub the effort iequired in setting up and solving a fluid model consisting of two layers of

finite fluid elements is about the same at the effort required for a model consisting of infinite fluid elements

over a layer of finite fluid elements.

A Two problems ere used to evaluate the performance of the infinite elements ,n applications to fluid-

structure interaction problems.

The first pioblem is to compute some lower natural frequencies of a submerged flat plate. The plate

used in thib test had the samite dimensions and material properties as one Nwhich Marcus 1 3 used to demonstrate

the application of finite elements for computing natural frequencies of submerged plates. lie showed that only

a few layers of finite fluid element. are sufficient to compute accurately the natural frequencie of submerged

plates, and lie obtained good accuracy using three layers. Therefoe, for this test, a set of standard natural

frequencies was obtained u:siiig a conservative model of the blrounding fluid consisting of five layers of finite

fluid elements. The accuracy of the natural frequencies computed for the test :ases was determined by

comparing those frequentis Nith the set of standard natural fiequencies. 'rhrec models of the surrounding

fluid were used for computing the natural frequencies of the plate. ''he first model, the most desirable from

the standpoint of ease of modeling and econioriy in computation, represents the sui rounding fluid with only

infinite elements. The second model uses infinite elemeit., to epiesent the infinite legion of fluid and a layer

of finite luid element.s undel the infinite element-, to obtain better resolution of tie sound field in the fluid

*.tl adjacent to the structure. To g.t tlls improved re, olution , one inust inv,.t additional effort in preparilg the



finite element model and in computing the solution. The third model of the surrounding fluid consists of two

layers of finite fluid elements and no infinite elements. 'This model includes the same number of elements to

be constructed and (except for some boundary constraints) the same number of degrees of freedom as the

second model. Thus the third model requires nearly the same investment in modeling effort mad

computational expense as the second. Appendix B gives details of the model used and techniques of the

computation.

Table I gives the frequencies computed in these tests.

TABLE 1. Natural frequencies of a submerged plate.

Frequencies(normalized)
Layers Infinite

of Finite Elements Mode
Elements Used 1 2 3 4 5

. 5 No 1.000 1.000 1.000 1.000 1.000

0 Yes 1.044 1.024 1.033 1.016 1.020

1. Yes 1.024 1.024 1.021 1.006 1.015

2 No 1.052 1.024 1.036 1.027 1.036

In this table, the natural frequencies have been normalized by dividing the frequencies for each mode by the

standard frequency for that mode. (The unnormalized frequencies are tabulated in Appendix B) 'fable 1

shows that using only infinite elements to represent the surrounding fluid produces good results and that

adding a layer of finite elements under the infiaite elements produces better results. However, it also shows

that using infinite elements (oes not give a significait advantage over using only finite elements, since using a

layer of finite elements and infinite elements requires approximately the same modeling and computational

effort as using two layers of finite elements.

The second problem for evaluating the performance of the infinite elements is to compute the

frequency response of a submerged cylindrical shell. The cylindrical shell had a finite length and was

subjected to harmonic excitation through a range of frequencics. It was driven, at one point by a sinusoidal

force of amplitude 1.0 and the response was computed at a separate transfer point. Appendix B give, details

I. - 1,1
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of this test. As in the preceding problem, the standard for comparison is the solution obtained when the fluid

was modeled using five layers of finitu fluid ele'ments. Figurs 3 to 6 show comparisons of responses obtained

using infinite fluid lements alone or over a layer of finite fluid elements with the responses obtained using

only one or two layers of finite fluid elements. The response shown in these figures is impedance. 'lihe

impedance is given in units of lb-sec/Iin and equals the force applied at the drive point divided by the velocity

of the transfer point, the point at which the response is computed. Figures 2 and 3 show that the use of only

infinite fluid elements does not yield results as accurate as does the use of either one or two layers of finite

fluid elements. Figure 4 shuois that the results obtained using infinite fluid elements over a layer of finite

fluid elements are accurate and are an improvement over the results produced using one layer of finite fluid

elements. Figure 5, however, shows that the same configuration using infinite fluid elements produces no

more accurate results than dues using an equally costly model that contains two layerb of finite fluid elements.

A 'DISCUSSION OF TEST RESULTS

The evaluations of the infinite elements show that they produce accurate iesults, especially if they are

used over a layer of finite fluid elements. This conclusion is conistent with earlier work on two-dimensional

infinite elements in % hich good ac,.uracy was ubtained when finite fluid elements were used with infinite

element. 14 Ilovevr, when sulutiuns obtained using infinite elements are iompared with solutions obtained

using only finite elements, taking into ,onsideration both the effort to construct the model and the accuracy of

the solutions, it is been that for added mass problbri infinite elements do not offer an advantage over finite

elements. For a more complete evaluatiun of the infinite elements, elements with higher order mapping and

shape functions .ould be tested. But for a fair umpaiison, a higher order infinite clement must compete with

an equally higher order finite element so that, as the accuracy of the infinite elements improves, so also will

the accuracy of its cometitor. It wa judged that, for added mass problems, the prospects that the accuracy of

the infinite element wuould improve Inure than tuat uf the competing method was nut good enough to warrant

the investment of additional study, and thert arc no plans to continue the investigation of infinite elements

for added mass problems.
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It is expected that infinite elements hold more promise for applications to the Helmholtz equation

problem. It is known that a finite fluid element model for the Helmholtz equation case must include six to

eight layers of finite elements to follow the shape of the wave and must include damping boundary conditions

on the outer boundary to account for energy dissipation by outgoing sound waves. 1 5 Infinite elements

developed for the Helmholtz equation problem will include wave characteristics of the sound field in their

shape functions and are expected to account for energy dissipation. The resalts obtained with the added mass

elements show promise that the Helmholtz equation elements will be able to produce accurate solutions with

the use of one layer of finite fluid elements. If this promise is realized, the use of infinite fluid elements will

offer a considerable advantage over the use of only finite fluid elements. The infinite elements for the

Helmholtz equation must also compete with the boundary integral equation method This method pro'lures

accurate solutmons, but it is also expensive, since it requires the solution of systems of linear equations that are

not bandtud and not symmetric. Infinite fluid elements offer the possibility that for some problems, the

accuracy needed may be obtained at less expense.

O'V
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APPENDIX A. VERIFICATiON PROBLEM

To evaluate the performance of the infinite elements for representing the Laplace operator, the

elements were used to solve the boundary value problem for the potential €

V 2o = 0

in the region outside of , bounded surface with boundary conditions ¢ f prescribed on the surface. The

boundary of the exterior Legion was a cylindrical surfaLce with finite lkngth and closed ends. The cylindrical

boundary has length = 50 in. and radius = 10 in.

Symmetries in the problem rtduced the number of elements needed to model the cylindrical boundary

and the exterior region A Flane of symmetiy midway between the ends and perpendicular to the axis of the

cylindrical boundary permitted modeling only the half vf the length of the cylindrical boundary and the half of

the region on one side of the plane. Tw3 additional planes of symmetry, mutually perpendicular and each

containing the- ai of the cylindrical butundary, peimitted modeling one-fourth of the remaining cylindrical

boundary and ext*r:or region. Therefoje, only one-tighth of the cylindrical boundary and exterior region

needed to be modeled.

Figure 7 gi'-e, nid and side view, of the cylinder and the burrounding acoustic fluid. Three varieties of

infil,ite elements Nrrc used to model the acoustic fluid in this problem. The infinite element. on the sides

and on the end, except the circle of elements on lie a\is of the cylinder, are the eight-nude infinite elements

dcscril ed earlier in this report. In thv corner region, between the side and end sections of elements, the

infinite eienleits ha, ? been modified to ext(.,:(l to infinity li, two directions, r and z. The circle of infinite

elem-nfs on the axis of the c3linder at the -nd of the cylidmicd shell are similar to the eigI,'-tnodc elements,

but their bases are triapgles.

The infinite element,- were e aluatcd by worpaiing the accuracy of a solutton obtained using a model

that incorporated infinite elements ith the akk iiaey obtaind uksing models that contained only finite

elements. Tho three finite element models co , ained two, tlree, o four layem.) of finite Clements. Since the

potential becomes zero at large radii, the Ihuiidl) condition 4 - 0 w as assigned ,at the oute boundary of the

l~m a dc, tment model. For the infinite elenient solution, the model of th,. excm ior remoim onsi'A-ted of onec
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Fig. 7. Finite and infinite element model of the region surrounding the cylindrical boundary.

layer of finite Laplace elementh ovcr the cylindrical surface with infinite elements placed oxer this layer. Thib

evaluation consisth of comparisons of values obtained for the exteriui potential at nudes on the buifacc

between the finite and infinite elements. The standard for compalisuns Avas a solutiun obtaiincd using the

boundary integral equation program BEASY. The boundary conditions were 4 (O,z) - (11t1)cou0 li the

cylindrical surface and 0(0,r) - 2.6 r cosO on the ,nd. To be consistent with the boundary elements used

, ~ with BEASY, the boundary conditions were computed at 0 0 *, '5 °, and 90 * and linearly inteipolated

between. Table 2 gives potentials (.omputed at several pointb, the putentialb for eat li point in the table have

been normalized by dividing by the standard potential computed at the point.
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TABLE 2. Potentials computed outside the cylindrical shell.

Potentials(normalized)
Point Coordinates Methods
r 0 z BIE IE FE4 FE3 FE2

6.67 22.5 29.17 1.000 0.955 1.050 1.044 1.027

10.0 45.0 29.17 1.000 0.914 0.875 0.861 0.820

13.14 56.25 20.83 1.000 0.999 1.002 0.979 0.917

13.14 56.25 8.33 1.000 0.990 0.966 0.927 0.840
Note: In Table 2, the acoustic fluid is modeled by

BIE - boundary integral equation program BEASY
IE - infinite elements over one layer of finite elements
FEi - finite elements only, i layers

I
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APPENDIX B. EVALUATION PROBLEMS

Two test problems were used to evaluate the use of infinite elements for applic,,tions to fluid-structure

interaction problems.

The first test problem is to compute the natural frequencies of a submerged cantilevered plate This

plate has the properties of the first of two plates analyzed by Marcus, 1 3 and the problem corresponds to his

deeply submerged case. The length-to-choid ratio of the plate equals 2.0 and the thickness-to-chord ratio

equals 0.0131. The plate has the material properties of steel, with Young's modulus = 3 0 107 lb/in 2 ,

Poisson's ratio - 0.3, and mass density - 7.324 10-4 lb- sec 2Ain 4. The fluid is assumed to have mass density

9.34 10- & lb- sec2 'in' and sound speed - 6000 in/sec. The frequencies computed here compare well with

those computed by Marcus. However, his formulation is slightly different from the formulation used here,

since he included the fluid matrix Q that derives from the 02p/0t term (see Eq. 2), so his results are not

compared with the results from this work. Rather, comparisonb were made using a standard consistent nith

the formulation of the added mass approximation used in this work.

By using boundary conditions that represent tl.e line of symmetry running lengthwise along de center

of the plate, o 'y one-half of the plate in the chordwisc direction need be modeled. The finite element model

of the plate consists of five NASTRAN QUADI plate elements along the length and three elements across the

width. One end of the plate is constrained to represent %e clamped end condition. The fluid is modeled with

NASTRAN three-dimensional IHEXI isoparametric finite elements and with infinite elements. The fluid

elements extend for two elements outhide of the plate in the directions of the length and the vidtli. B., using

half of the mriass and bending stiffnes of the plate, only die, fluid on one side need be explicitly modeled. On

the outer boundary of the fluid finite element model the boundary condition p 0 is applied. Figure 8 shows

the finite element model of the plate and the acoustic fluid.

The finite element solution of the submerged plate problem is imnplmented using the NASTRAN

program in three runs. The first NASTRAN run computes a force vector using a unit prcssume load on the

fluid-structure interface. The resulting pressure load vector is processed to produce the area matrix A, and in

the second NASTRAN run the matrix A is used to foim the added ni,,s matrix. The third NASTRAN run
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Fig. 8. Finite element model of the submerged plate and surrounding fluid.

adds the added mass matrix to the mast, matrix of the structure anl computes the natural frequencies of th

fluid-structure system.

Several configurations of fluid elements were used to compute the natural frequencies Since Marcus 1 3

showed that for low frequencies the natural frequencies of a submerged plate can be computed accurately

using only a few layers of finite elements (he got good accuracy using three layers), a set of natural

frequencies was computed using five layerb of finite fluid elements and this set was used as the standardu for

comparison. Comparisons withi frequencies obtained using thiee and four layers showed that the conservative

model with five layers v as well converged. Table 3 shows frequencies obtlined in the test..

The second tkest problem is to compute the forced frequency response of a submerged cylindrical sheil

with closed ends. The amplitude of the response is computed at a transfer point on the cylinder for a range of

frequencies. The response is due to a harmonic excitation of unit amplitude at a separate drive point

'23
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TABLE 3. Natural frequencies of a submerged plate.

Frequencies(Hz)
L ayer.- Infinite

of Finite Elements Mode
Elements Used 1 2 3 4 5

5 No 5.04 28.7 32.9 94.9 95.5

0 Yes 5.26 29.4 34.0 96.4 97.4

1 Yes 5.16 29.4 33.6 95.5 96.9

2 No 5.30 29.4 34.1 97.5 98.9

The finite element model for the surrounding fluid, in vhich infinite elements are placed over one layer

of finite element-, had the barne cunfiguration as that used for the exterior region in the Dirichlet problem in

Appendix A (see Fig. 7). As in the Dirichlet problzm, symmetries reduced the number of elements needed

to model the cylinder and the surrounding fluid, so that only one-eighth of the cylinder and surrounding fluid

needed to be mudeled. The finite element analysis for this problem is also implemented using the NASTRAN

program. The matrice, for the infinite clementh and the area niatrix are generated by a separate program and

entered during the NASTRAN run un DMIG cards images. As in the submerged plate problem, the structure

(that is, the cylindrical shell) was modeled with NASTRAN QUAD 1 plate elements and the fluid was modeled

with NASTRAN three-dimenbional IIIEX1 isoparametric finite elements. Figures 3-6 show frequency

response curves for the submerged cylindrical shell.
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